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Field Analysis of New Coaxial Dielectrometer

Weiguo Xi and Wayne R. Tinga, Member, IEEE

Abstract—In response to the new developments in high tem-
perature microwave dielectrometers, [1], [2] a field analysis of
a composite sample insertion hole in a coaxial re-entrant cavity
is performed via a mode-matching formulation. In this paper,
the formulation and the numerical method are presented. The
numerical results are discussed with attention focused on the
hole effects on the dielectric loaded cavity. By virtue of this
analysis and the structure which allows for the sample insertion
holes, a new dielectrometer is obtained featuring both ease of
sample insertion and accuracy in dielectric determinations. This
paper demonstrates that solid, liquid or powdered samples can
be readily accommodated and measured, and the dielectric data
obtained via two theoretically calculated calibration curves are
in good agreement with published data.

I. INTRODUCTION

AVITY perturbation methods have been widely used

to measure complex permittivities of materials at mi-
crowave frequencies [3]-[5]. These measurements are
conducted by introducing a small, properly shaped sample
into a cavity and determining its dielectric properties from
the shift in the cavity’s resonant frequency and the drop
in its quality factor. In order to introduce the sample into
a cavity without opening the cavity each time, it is con-
venient to have a hole in one endplate. Such a sample
insertion hole can also ensure testing repeatability, easy
sample preparation and elimination of the typical air gap
problem [6], [7]. However, this hole also leads to a field
redistribution, which in turn produces uncertainties in
dielectric determinations if the effect of the hole is not
taken into account.

The hole in a cavity causes a departure from a simple
idealized cavity geometry and makes it exceedingly dif-
ficult to obtain exact field solutions. Only a few authors
have given an analysis of the hole effect, mainly on cylin-
drical cavities [8]-[10]. Recent progress in the develop-
ment of new high temperature microwave dielectrometers
and applicators requires the analysis of hole effects on the
coaxial re-entrant cavity with a hollow center conductor
[1], [2]. Our experiments have shown that a cavity with
insertion holes has significantly different sample loading
effects compared to a cavity without holes [1].

In this paper, the mode-matching formulation and the
numetrical method for analyzing electromagnetic fields in
the composite hole are presented. Effects of the hole on
resonant frequency and Q-factor are discussed in detail.
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An error analysis for dielectric determinations is also in-
cluded. Finally, complex dielectric data for a number of
well-characterized materials are presented as obtained
from two calculated calibration curves which include ef-
fects of both the insertion hole and the sample holder.

II. FORMULATION AND NUMERICAL METHOD
A. Structure

The geometry of the cavity analyzed in this paper is
depicted in Fig. 1(a). Unlike ordinary coaxial re-entrant
cavities, this cavity has a hollow center conductor and an
endplate with a centered hole formed by a metallic sup-
port tube. A cylindrical sample can be inserted into the
cavity and further into the hollow center conductor
through the endplate hole. Liquids, paste or powder sam-
ples must be contained in a sample holder, usually a glass
tube. The hollow center conductor and the endplate hole
will, in addition, provide a concentric alignment. The
holes in the center conductor and endplate are so small
compared with the wavelength that only evanescent modes
exist even when the inserted sample has a relatively high
dielectric constant, e.g., ¢, = 80. Therefore, the fields
will be strongly attenuated inside the holes, and so the
geometrical discontinuities at the sample ends will not af-
fect the cavity fields. If we assume that the fields vanish
at the points, say, z = H, and z = —H, as shown in Fig.
1(b), an artificial metallic wall can be erected to simplify
the analysis. The wall position, H; and H,, is chosen based
on the decaying rate of the field inside the holes which
will be discussed later.

B. Mode-Matching Formulation

The method of mode-matching has been employed for
analyzing coaxial re-entrant cavities by several authors
[71, [11]-[13] and is also selected in this paper for inves-
tigating the hole effects. The geometry shown in Fig. 1(a)
can be divided into four subareas A, B, C, and D as dem-
onstrated in Fig. 1(b). According to the symmetry of the
structure, an infinite number of axially symmetric modes
(TM) can be assumed for field expansions in each subarea
as follows

In subarea A:

E4 = Z)O a4, Z8, (k4 7) cos Bz (1.1)
Ed = 2 a,(84/kDZ, (ki sin 81z (1.2)
n=1
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Fig:. 1. The re-entrant coaxial cavity to be analyzed. (a) Cross section; (b)

Subarea division for mode-matching analysis. In the above field expansions, the following notation is

used. Superscripts, 4, B, C and D relate to each subarea;
subscripts, n, m and [ designate each mode integer; a,,
b,,, c; and d; are the expansion coeflicients, i.e., mode
amplitudes; B is the axial wave number and & is the trans-
verse wave number; Z; and Z; are the combinational Bes-

Hy = 2 a,joeo/ki)Z1 0y cos Bz (1.3)

Bz =nm/L (1.4)  gel functions of the first and the second kind and F is the
K4 = k2 — (B4)? (1.5) associated constant which is determined by the boundary
conditions.
Z4 (kAr) = Ty (ki) — FiYy(kir) (1.6) The boundary conditions at the axial walls (assumed
o4 4 4 4 perfect conductors) at z = 0, L, D, H; and —H, have
Ziutkyr) = Jiknr) = Fo Yy (kan). (1.7) " already been satisfied by using the axial mode function of
In subarea B: {sin Bz}. The condition that E4 = 0 at r = r, requires

- Fii = Jo(kyr)/ Yokiir) . ®)

B B 1B B ,
Ee = mz=]0 bnZom (kinr) cos Bz @1 Using the continuity of E, or Hy at the common surface
o of subarea C and D, i.e., r = r,, we can determine FZC
EE = 2] b, B2 /kB)ZE (kEr) sin BBz (2.2) and d; directly by taking advantage of the fact that the

m=1

fields in C and D depend on the same axial mode func-

o tions:
HE = 20 b, (jweg/kB)Z5, (KB Bz (23
6 = 2y bn o k) ZinCnr) cos Bz G g 1 (Fr) —hydo (S ) /1Y, (65 r)—h Yo k5 7))
B2 = mx/D (2.4) 6.1
(B = k2 — (B2 2.5) b = (e,kf [ en kDY (kD19 [Jo (kP T (6.2)
_ [7C(xC D
Z8.(kBry = Jy(knr) —FLYoknn (2.6) d; = [Zg(Kiry) [Jo kT rle;. (N
The rest of the unknowns are mode amplitudes a,,, b,
Z8 kBr) = 7, (kBr) —FBY, (K} 2.7 B b
imkmr) = Ji(kyr) —Fp Y1 (kpr). 2.7)  and ¢;, and constants F,,, which can be solved through
In subarea C: matching tangential components E, and H, at the common
- surfaces between A and B, and B and C. Since the field
E€ = 3 ¢,ZS*Er) cos BEz 3.1) expansions in these subareas do not share the same axial
: .

1

0 mode function, the Fourier method is employed to obtain
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the following matrix equations:

A =PB (8)
GB=0 &)
C = UB (10)
T8 =0 amn
where,
A= (ag, ap, -+ yay-)'s B = (b, by, -, by

T
@ = (CO9 Cps "0 s cL—!)

P = [an]NxM§ @ = [giJ]MXM; U= [ulm]LXM;
T= [[U]MXM

In the derivation of (8)-(11), the infinite series of field
expansions in subareas A, B and C are truncated after the
(N — Dth, (M — Dth and (L — Dth term. The matrix
elements p,,, 8;, W, and t; are functions only of geom-
etry parameters and ¢, and ¢, if the resonant frequency f;
and constants F2 are known.

C. Numerical Methods

In the simplest case of absence of both the sample in-
sertion hole and sample holder, i.e., 4, = H, = 0 and ¢,
=1,wehave C = B, T = 0 and FZ = FS. The problem
is thus reduced to solving only (9). To avoid a trivial so-
lution, it is required that

det G = 0.

(12)

The solution of this equation gives us the resonant fre-
quency of the cavity without holes. With the known f; and
assumed unity by, b,, can be found by solving (9), from
which, a, and d; can in turn be calculated simply by (8)
and (7).

In the presence of sample insertion holes, FZ cannot be
expressed in an explicit form as Fy in (6), but can be
found along with the resonant frequency f; through solv-
ing (9) and (11) simultaneously. Since matrix elements g;
and ¢; are nonlinear functions of f, and F B the problem
is one of solving a set of nonlinear algebraic equations
with 2M variables: fy, F5 (m = 0,1, +++ . M — 1) and
b,(imm=1,2,--- M- 1). However, this problem can
also be defined as searching for f, and F5 that not only
satisfy (12) and

detT =0 (13)

but also gives an identical solution of 8 from (9) and (11),
ie.,

(bm)G = (bm)T (14)

From a practical point of view, we may be content with
an approximate solution of (12)-(14), which can be ob-
tained through a procedure of minimizing the following
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Fig. 2. The convergence rate of the calculation; N, M and L are the num-
ber of modes in subarea A, B and C (or D) which are preserved after the
truncation; ry = r, = 0.25.r, = 1.25,r, = 4.5, L = 20.0, D = 0.5, in
cm, €, = 10.0, f; = 3070 MHz.

TABLE I
CALCULATED RESONANT FREQUENCIES (MHz) AS COMPARED WITH
MEASUREMENTS
D (CM) fo (cale.) fo (meas.) Afy /1o (%)
0.20 3040.3 3042.1 —0.059
0.30 3052.2 3054.0 -0.057
0.50 3072.0 3073.0 -0.032
0.75 3091.2 3090.8 +0.013
1.00 3106.8 3105.5 +0.042
ro = 0.355, r;, = 1.244, r, = 5.0, L = 20.0cm, ¢, = 1
objective function:
B B
Ob (fOs Fg, -+, Fy_1)
= W, | det G| +W,]| det T|
M-1
W 2 | = Bl (9)
m=

where, W,, W, and W, are weight factors which are ad-
justed during the calculation [14].

Since the field expansions in subarea B for a gap less
than X\ /10 are rapidly convergent series, M can be as small
as four. Due to a small number of variables, the simplex
method [14], one of the direct minimizing methods, is
chosen to search for fy and F2 that minimize Ob. Based
on this algorithm, a computer program is implemented to
calculate the resonant frequencies, mode amplitudes of
each subarea and the Q-factor of a given dielectric loaded
cavity. It takes half a minute of CPU time on our Amdahl
(5870) main frame if well-guessed initial values of f and
F2 are entered. Fig. 2 exhibits the convergence rate of
the calculation and shows that the calculation errors,
which are mainly due to truncation errors, are within +0.1
MHz at 3.0 GHz if N > 50. Moreover, calculated reso-
nant frequencies of an empty cavity with varied gap widths
are listed in Table 1 along with the measured values, which
shows the discrepancy to be smaller than 0.06 % . It should
be mentioned that the error of frequency measurements
may be as large as +0.5 MHz for our scalar network ana-
lyzer (HP8756A) even after a one-hour warm-up and cal-
ibration against a microwave counter (EIP575).
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III. HoLE EFFECTS

The presence of the sample insertion hole in the re-en-
trant gap has similar effects on cavity characteristics as
widening the gap. Using this analogy, we may qualita-
tively expect that the holes will cause the gap capacitance
to decrease, or resonant frequency to increase, and the
gap E-field to decrease. The reduced field will in turn
lessen the dielectric sample loading effects [13], namely,
the frequency shift and Q-factor drop due to the sample.
All these effects are discussed in detail below based on
the numerical calculations.

A. Hole Field Attenuation

Due to the diameter of the holes being much less than
the wavelength, fields cannot propagate but diminish
along a path deeper into the holes. As shown in Fig. 3,
the field, at some distance into the hole, is attenuated to,
say 5% which corresponds to a negligible variation in the
calculated resonant frequency. This distance, z;,, normal-
ized by the hole diameter, may be called the effective
depth of the hole. The effective depth will increase if a
sample is introduced, in particular, a high permittivity
sample. The dependence of the effective depth on a sam-
ple’s dielectric constant is illustrated by the calculated re-
sults shown in Fig. 4. As expected, while the dielectric
constant increases, the effective depth increases, and
eventually reaches infinity where the hole no longer acts
as a waveguide operating below cutoff. Moreover, the ef-
fective depth indicates the closest artificial wall position
which one can use in the mode-matching analysis,
namely, H, = —H, = z,. This is then also the minimum
sample length which one can use in practical measure-
ments.

B. Gap Field Distribution

As predicted, the E-field intensity in the re-entrant gap
is weakened and its peak value no longer occurs on the
axis when the holes are present adjacent to the gap. This
is demonstrated in Fig. 5, where radial distributions of E,
in the midplane of the re-entrant gap are plotted for three
cavities: (1) without insertion holes or a sample holder;
(2) with insertion holes but without the holder and (3)
with both insertion holes and the holder. It shows that the
peak field is shifted from the axis to the radial edge of the
holes and that the presence of a sample holder reduces the

gap field further.

C. Resonant Frequency Shift

For the same cavity structures (1), (2) and (3) as shown
in Fig. 5, resonant frequency shifts are calculated with
varying dielectric constants and plotted in Fig. 6. The re-
sults are in qualitative agreement with those of the gap
field in Fig. 5. In other words, the stronger the gap field,
the greater the shift in resonant frequency. The slope of
Afp versus ¢, determines the sensitivity in dielectric de-
terminations. However, it also commands the measurable
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i.e.r,=0.24,r, =123, r,=4.51,L =205,D = 0.3 cm.

range of dielectric properties because a larger detuning of
a resonator tends to bring about more difficulties such as
impedance mismatch in practical measurements. There-
fore, a coaxial cavity with sample insertion holes and
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Fig. 6. Resonant frequency shift produced by a sample at about 3 GHz;
cavity (1), (2) and (3) are the same as in Fig. 5.

holder can extend the measurable range of dielectric prop-
erties. Moreover, it presents a better linearity of fre-
quency shift as a function of dielectric constant. As shown
in Fig. 6, the curve for cavity (3) is almost a straight line
up to €, = 80, which is a great convenience in dielectric
determinations. This improvement in linearity is not only
the consequence of a reduction of the gap field but also
the outcome of an increased effective hole depth at a
higher dielectric constant which offsets the saturation ex-
hibited for a normal detuning curve, such as the curve for
cavity (1) in Fig. 6.

D. Energy Stored and Dissipated in Sample

The electric energy stored in a saraple can be broken
into two parts, namely, the gap portion energy and the
hole portion energy. The presence of the holes reduces
the gap portion energy because of the decreased gap field
but also yields an additional energy in the holes. To ex-
amine these two portions of energy closely, the stored en-
ergy in a sample is integrated over the volume of the gap
and the holes separately for varied dielectric constants,
and the results are presented in Fig. 7 together with the
results for the no-hole case. It shows that the hole portion
contributes an appreciable percentage of the total energy
stored in the sample, and that it increases with dielectric
constant at an increasing rate. It is this hole portion en-
ergy that compensates for the reduction of the E-field in
the sample due to the increase of the dielectric constant,
thus extending the linear range in the curve of the reso-
nant frequency shift versus dielectric constant.

According to the approximation of perturbation theory,
the dissipated energy in the sample is directly propor-
tional to the stored energy, with the constant of propor-
tionality being the loss tangent of the sample. Conse-
quently, for a constant loss tangent, the dissipated energy
in the sample increases with the dielectric constant, €,, in
the same manner as the stored energy, i.e., at a nearly
constant rate in the lower range of ¢, and at an increasing
rate at higher e,. When the cavity is loaded with a sample
having both a high dielectric constant and a high loss tan-
gent, it will present a very low Q-factor and will be se-
verely under-coupled. Therefore, in order to obtain a
wider measurement range, the sample volume must still
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Fig. 7. Normalized electric energy stored in a sample, as a function of the
sample’s dielectric constant; for cavity (1) and (3), (see Fig. 5).

be limited, even though the insertion hole already tends
to lower the gap fields.

IV. DIELECTRIC DETERMINATION AND ERROR
ANALYSIS

To determine dielectric constants and loss tangents, it
is essential to find their relationships to the measurable
parameters, which are the resonant frequency shift and
the Q-factor change produced by the sample in case of
cavity perturbation methods. Such relationships can be
easily obtained by the mode-matching analysis in the form
of calibration curves.

A. Dielectric Constant and its Error

A calibration curve of dielectric constant is given in
Fig. 8, corresponding to the geometry of our experimental
cavity and the frequency band of interest. Using a least
square fit, this curve can also be expressed by the poly-
nomial

e, =1+ 1.56(Afy) + 0.071(Af;)* —0.0014 (Af,)’

~0.7 x 107%(Af)* +0.11 x 107%(Af)°  (16)

where Af, is the absolute value of the resonant frequency
shift in MHz produced by a sample of permittivity, €,.
Thus, the dielectric constant can be readily determined,
either graphically or mathematically, once the resonant
frequency shift due to the inserted sample is measured.

If we initially neglect the error in the calibration curve,
the uncertainty in the determined dielectric constant can
be evaluated by

_ de,
d(Afo)

where, de,/d(Afy) is the slope of the dielectric calibra-
tion curve which is also plotted in Fig. 8 and 8(Afy) is
the measurement error in the resonant frequency shift.
Since de, /d(Afy) < 2.8/MHz and 6(Afy) < 0.03 MHz
for, say an HP8350 Sweep Oscillator, d¢, will not exceed
+0.1.

The errors in the calibration curve include numerical
errors such as truncation errors and round-off errors, er-

de, 6 (Afo) (a7
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Fig. 9. The effect of varying sample radii on the resonant frequency shift;
the cavity is the same as in Fig. 8.

rors due to the uncertainties in cavity and sample dimen-
sions: g, 7o, 71, r;, L and D, and errors caused by the
departures of a real cavity from the ideal mathematical
model as caused by eccentricity of the sample placement,
effects of the movable short circuit and coupling loop.
Obviously, the use of the resonant frequency shift instead
of the resonant frequency itself greatly reduces most of
these errors. Furthermore, the structure with the sample
insertion holes limits the eccentricity of sample placement
and also eliminates completely the air gap problem which
may cause an error of over 10% in ¢, [7].

Nevertheless. the error in the determined ¢, is more sen-
sitive to the uncertainties in sample radius (r,) and gap
width (D) than in the other dimensions. Figs. 9 and 10
demonstrate the influences of variations in r, and D on the
calculated Afy, and in turn on ¢,. From Fig. 9, it can be
seen that if a sample holder is not used, even a slight
looseness of the sample in the holes will produce a sig-
nificant error in Af;, in the same way as the axial air gap
in cavities without insertion holes. Fortunately, this error
can be greatly suppressed by using a low permittivity
sample holder such as a quartz tube (e¢,; = 3.78). The
error caused by a variation of D is relatively small and
will not exceed 1% if AD is controlled within 1%. It
would be much larger if the cavity had no insertion hole
and thus axial air gaps existed unavoidably at the sample
ends. The results in Figs. 9 and 10 also show that 1) the
error in A fy will become larger for a higher dielectric con-
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stant sample and a narrower gap; 2) the error caused by
the looseness of the sample and the sample holder may be
compensated by using a slightly larger gap to keep the
sample volume in the gap constant.

B. Loss Tangent and its Error

The Q-factor of a dielectric loaded cavity can be ex-
pressed as

1/00=1/0c + 1/0p (18)

where, Q¢ and Qj, is the cavity Q-factor which accounts
for the wall loss and the sample loss, respectively. By
definition, Qp can be written as

I/QD :FltaH6
Fl:

where, W, and Wy, is the electric energy stored in the
whole cavity and in the sample respectively, and F; is their
ratio which represents the degree of sample loading to a
cavity and is called sample loading factor. From (18) and
(19), the loss tangent can be found by

(1/0L =1/Qc)/F

~ (1/Q —1/Q0/F = AQ/Q)/F, (21

0y is the unloaded cavity Q-factor and it, together with
QOr, can be obtained from measurements. In Fig. 11 is
plotted the calibration curve of loss tangent, i.e., 1/F,

(19

Wn/Wc 20)

i

tan 6
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TABLE II
EXPERIMENTAL RESULTS OF DIELECTRIC PROPERTIES AS COMPARED WITH PUBLISHED DATA (f = 3.05 GHz, T = 23°C)

Present Work

Reference Data

Sample €, Ae, tan & Atan § €, tan &
Teflon 1.94 +0.08 0.0025 +0.0006 2.05 0.0083 (1)
—1.16 —0.0006 2.10 0.0002 (2)
Nylon 2.94 +0.07 0.010 +0.0026 3.04 0.012 )
-0.19 -0.0022
Quartz 3.74 +0.06 0.0005 +0.00012 3.78 0.0005 (3)
(Corning) -0.20 —0.0001
Soda Lime 6.45 +0.04 0.012 +0.0034 6.71 0.013 2)
(0080, Corning) ~0.28 -0.0024
Alumina 8.70 +0.03 0.0008 +0.00012 9.30 0.0002 @)
(Al-23, IM) —0.36 —0.0001
CuO 3.44 +0.05 0.247 +0.037 3.20 0.28 5)
(powder, 2.70 g /cc) —0.20 —-0.025
Benzene 2.24 +0.04 0.0040 +0.001 2.28 =0.002 (6)
-0.12
Monochlorobenzene 5.39 +0.05 0.110 +0.024 5.54 0.12 7
-0.15 -0.022
Methanol 19.9 +0.30 0.744 +0.15 18.9 0.75 (8)
21.0 0.62 2)
Distilled Water 76.5 -1.2 0.153 +0.035 77.3 0.155 )
—0.030
0.1M NaCl 73.3 -1.2 0.219 +0.05 75.2 0.225 ®
—0.04
10%A, 20%M and 6.66 +0.03 0.278 +0.061 7.3 0.22 (7)
70%B -0.20 -0.056
40%W and 60%M 459 —0.69 0.426 +0.094 46.0 0.37 @)
—0.085

A-Acetone, M-Methanol, B-Benzene, W-Distilled Water
(1) HP Product Note 8510-3, Aug. 1985

(2) A. R. von Hippel, Dielectric Materials and Application, MIT Press, 1954

(3) A. C. Metaxas, et al, Industrial Microwave Heating, IEE England, UK, 1988

(4) Data from Superior Technical Ceramics Corp., St. Albans, VT, U.S.A.

(5) W. R. Tinga, Electromagnetic Energy Reviews, vol. 1, p. 47, 1988

(6) B. Terselius, er al., J. of Microwave Power, 13(4), p. 327, 1978

(7) P. O. Risman, er al., J. of Microwave Power, 6(2), p. 101, 1971

(8) B. P. Jordan, et al., J. Phys. D: Appl. Phys., vol. 11, p. 695, 1978

(9) A. Stogryn, IEEE Trans. Microwave Theory Tech. vol. MTT-19, p. 733, Aug. 1971

which, from (21), is equal to the loss tangent if A(1/Q)
= 1, as a function of ¢,. This curve corresponds to the
same cavity as the calibration curve of dielectric constant.
As before, this curve can also be expressed by

1/F, = 2101 /¢, +127 — 2.77¢, +0.0253¢2.  (22)

Therefore, the loss tangent can be readily found if the Q
change is measured and the dielectric constant is known.
The error involved in the thus determined loss tangent is
estimated as follows.
Taking the variation of (21) and dividing it by tan 6,
we have
d(tan ) 6(A(1/Q)
tan & A/O)

which means that the relative error in tan § is broken into
two parts, the part due to the Q-measurement error

5(A(/Q) _ QidQ —Q36Q,
AQ/Q) QLQo(Q —Qp)

and the part due to the error in dielectric constant trans-
ferred through the filling factor

F8(1/F) = F((1/F)/de) - e,

+ F,6(1/F) (23)

(24)

25

If the approximation is made that 6Qy, = 6Q; = 60 and
Q1 + 00)/(QL0Qy) = 2/Q, (25) becomes

S(AL/Q)/(A(/Q) = —20Q/0Q (26)
where 8Q/Q can be treated as the average relative error
in Q measurements. In our calibrated scalar reflectometer
setup, such an error is mainly caused by the directivity of
the dual directional coupler and is estimated to be +10%
for a 30 dB directivity and +4% for a 40 dB directivity
in the worst case [15].

The term of F,(3(1/F;)/de,) is also plotted in Fig. 11.
From before, |5¢,| < 0.1, so that the tan § error from e,
is negligible if ¢, = 10. However, this error will rise to
8% when ¢, is close to unity.

V. EXPERIMENTAL MEASUREMENTS

It has been shown that the dielectric constant and loss
tangent of a sample can be determined from two theoret-
ical calibration curves if one can measure the resonant
frequency and Q-factor before and after the sample is in-
serted. In this work, a scalar network analyzer (HP8756A)
is utilized in a reflectometer setup [16] to measure the
reflection spectrum, from which the resonant frequency
and Q-factor are found.
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A number of different samples were measured with the
coaxial cavity analyzed above and their dielectric prop-
erties were determined using the calibration curves in
Figs. 8 and 11. The results and their maximum error
ranges are presented, together with the published data, in
Table II.

The Ae, in Table II is estimated by considering the er-
ror in measured Afy and the error due to the looseness of
the test tube and samples. The former causes a maximum
error of +0.1% in ¢,; the latter is equivalent to a sample
" radius variation of —0.5% to —1.0% and —1.0% to
—1.5% which results in a maximum relative error of —1%
to —1.5% and —1% to —3% in ¢, for liquid and solid
samples respectively. The errors in loss tangent are mainly
caused by the inaccuracy of ) measurements which is
+10% for the worst case in our experimental setup. The
inaccuracy of ¢, although to a lesser degree, also implic-
itly affects the accuracy of loss tangent as seen in (25).

- The method of dielectric measurement presented is
based on the calculated calibration curves. In this sense,
it is an absolute method which does not rely on the ref-
erence data. Nevertheless, it still gives results in good
agreement with the reference data as shown in Table II.

VI. SuMMARY

A coaxial re-entrant cavity with composite sample in-
sertion holes is analyzed using a four-subarea mode-
matching formulation. The numerical results reveal that
the hole presence leads not only to a reduction of the gap
field but also to an energy storage inside the holes. These
hole effects result in a nearly linear function of the reso-
nant frequency shift for varying dielectric constants.

Two calibration curves for determining the dielectric
constant and loss factor are derived from theoretical cal-
culations rather than from experimental measurements.
Nonetheless, the dielectric data obtained from such an ab-
solute method are still in good agreement with the pub-
lished data. The error analysis show that the accuracy can
be improved further if the measurement errors in the res-
onant frequency and Q-factor are reduced.
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