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Abstract—In response to the new developments in high tem-
perature microwave dielectrometers, [1], [2] a field analysis of

a composite sample insertion hole in a coaxial re-entrant cavity
is performed via a mode-matching formulation. In this paper,
the formulation and the numerical method are presented. The

numerical results are discussed with attention focused on the

hole effects on the dielectric loaded cavity. By virtue of this
analysis and the structure which allows for the sample insertion

holes, a new dielectrometer is obtained featuring both ease of

sample insertion and accuracy in dielectric determinations. This

paper demonstrates that solid, liquid or powdered samples can
be readily accommodated and measured, and the dielectric data
obtained via two theoretically calculated calibration curves are
in good agreement with published data.

I. lNTRODUCTION

cAVITY perturbation methods have been widely used

to measure complex permittivities of materials at mi-

crowave frequencies [3]– [5]. These measurements are

conducted by introducing a small, properly shaped sample

into a cavity and determining its dielectric properties from

the shift in the cavity’s resonant frequency and the drop

in its quality factor. In order to introduce the sample into

a cavity without opening the cavity each time, it is con-

venient to have a hole in one endpkke. Such a sample

insertion hole can also ensure testing repeatability, easy

sample preparation and elimination of the typical air gap

problem [6], [7]. However, this hole also leads to a field
redistribution, which in turn produces uncertainties in

dielectric determinations if the effect of the hole is not

taken into account.

The hole in a cavity causes a departure from a simple

idealized cavity geometry and makes it exceedingly dif-

ficult to obtain exact field solutions. {Only a few authors

have given an analysis of the hole effect, mainly on cylin-

drical cavities [8]-[10]. Recent progress in the develop-

ment of new high temperature microwave dielectrometers

and applicators requires the analysis of hole effects on the

coaxial re-entrant cavity with a hello w center conductor

[1], [2]. Our experiments have shown that a cavity with

insertion holes has significantly different sample loading

effects compared to a cavity without holes [1].

In this paper, the mode-matching formulation and the

numerical method for analyzing electromagnetic fields in

the composite hole are presented, Efrects of the hole on

resonant frequency and Q-factor are discussed in detail.
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An error analysis for dielectric determinations is also in-

cluded. Final ly, complex dielectric data for a number of

well-characterized materials are presented as obtained

from two calculated calibration curves which include ef-

fects of both ‘the insertion hole and the sample holder.

II. FORMULATION AND NUMERICAL METHOD

A. Structure

The geometry of the cavity analyzed in this paper is

depicted in Fig. 1(a). Unlike ordinary coaxial re-entrant

cavities, this cavity has a hollow center conductor and an

endplate with a centered hole formed by a metallic sup-

port tube. A cylindrical sample can be inserted into the

cavity and further into the hollow center conductor

through the endplate hole. Liquids, paste or powder sam-

ples must be contained in a sample holder, usually a glass

tube. The hollow center conductor and the endplate hole

will, in addition, provide a concentric alignment. The

holes in the center conductor and endplate are so small

compared with the wavelength that only evanescent modes

exist even when the inserted sample has a relatively high

dielectric constant, e.g., E, = 80. Therefore, the fields
will be strongly attenuated inside the holes, and so the

geometrical dliscontinuities at the sample ends will not af-

fect the cavity fields. If we assume that the fields vanish

at the points, say, z = HI and z = –H2 as shown in Fig.

1(b), an artificial metallic wall can be erected to simplify

the analysis. ‘rhe wall position, HI and H2, is chosen based

on the decaying rate of the field inside the holes which

will be discussed later.

B. Mode-Matching Formulation

The method of mode-matching has been employed for

analyzing coaxial re-entrant cavities by several authors

[7], [11]-[13] and is also selected in this paper for inves-

tigating the hole effects. The geometry shown in Fig. 1(a)

can be divided into four subareas A, B, C, and D as clem-

onstrated in IFig. 1(b]. According to the symmetry of the

structure, an infinite number of axially symmetric modes

(TM) can be assumed for field expansions in each subarea

as follows

In subarea A:

.

E2 = ~~o a.Z& (kfl r) cos (3~z (1.1)

w

E: = ~~1 afi(@f/kf)Z?,l (k~r) sin Bfz
(1.2)
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Fig. 1. There-entrant coaxial cavity to be analyzed. (a) Cross section; (b)

Subarea division for mode-matching analysis.

w

H; = Z afi(jtieo/k~)Z~. (kflr) cos 62.? (1.3)
~=()

fi~ = n~/L (1.4)

(k:)z = k; – (13:)2 (1.5)

Z& (k~r) = 10(k~r) – F: YO(k~r) (1.6)

.Z~.(k~ r) = .lI (kg r) – F: YI (k~r). (1.7)

In subarea B:

EB = ~ b~Z& (k~r) cos Pizz (2.1)
m=O

m

E; = ~ bn((3~/k~)Z~~(k~r) sin 6:z (2.2)
~=1

m

H$ = ~ b~(jueo/k~)Z~,.(k~r) cos ~~z (z-g)
~=o

P; = mx/D (2.4)

(k;)’ = k; - (6;)2 (2.5)

‘FL (k~r) = .70(k~r) –F; YO(k~r) (2.6)

z!~ (kni‘r) = .ll(k~r) –F~Yl(k~r) . (2.7)

In subarea C:

m

E: = ~~0 clZ$(k~r) cos 13SZ (3,1)

(3.4)

(3.5)

(3.6)

(3.7)

(4.1)

sin ~~z (4.2)

m

H: = ~~o dt(jti~o~,/k~)J1 (k?r) cos (3?z (4.3)

~~ = ~~ = lT/H (4.4)

(k~)2 = e,k: – (DP)2. (4.5)

In the above field expansions, the following notation is

used. Superscripts, A, B, C and D relate to each subarea;

subscripts, n, m and 1 designate each mode integer; a.,

bn, c1 and d[ are the expansion coefficients, i.e., mode

amplitudes; 13is the axial wave number and k is the trans-

verse wave number; 20 and 21 are the combinational Bes-

sel functions of the first and the second kind and F is the

associated constant which is determined by the boundary

conditions.

The boundaly conditions at the axial walls (assumed

perfect conductors) at z = O, L, D, HI and –H2 have

already been satisfied by using the axial mode function of

{sin &}. The condition that E: = Oat r = rz requires

(5)F; = Jo(k#rz)/YO(k~rz).

Using the continuity of Ez or H@ at the common surface

of subarea C and D, i.e., r = r$, we can determine F;

and dl directly by taking advantage of the fact that the
fields in C and D depend on the same axial mode func-

tions:

F~ = [Jl (k~r.) –hlJo(k~r,)]/[Yl (k~r,)–hl Yo(k~r$)]

(6.1)

hl = (~,k~/e,l k?) [Jl (k?r$)/Jo(k~rs)] (6.2)

dl = [Zfi(K~r,) /J. (k~r,)]cl. (7)

The rest of the unknowns are mode amplitudes a., b~

and cl, and constants F;, which can be solved through

matching tangential components EZ and H+ at the common

surfaces between A and B, and B and C. Since the field

expansions in these subareas do not share the same axial

mode function, the Fourier method is employed to obtain
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the following matrix equations:

A=PB

GD=o

~.u~

TEl=O

where,

COAXIAL DIELECTROMETER

(8)

(9)

(lo)

(11)

A=(ao, al,”’”, a~–l)~; B = (bo, bl, “ o . , b~–l)~;

c = (CO,C*, “ “ “ ,CL-J)T

P = [pn,n]~ ~ ~; G = [g~]~~ M; ~ = [UJL X M;

u = [&lMxM

In the derivation of (8)-(1 1), the ir~finite series of field

expansions in subareas A, B and C ar(a truncated after the

(N – l)th, (M – l)th and (L – l)th term. The matrix

elements p.~, gti, ul~ and ttiare functions only of geom-
etry parameters and ~, and C,l if the resonant frequency ~.

and constants F: are known.

C. Numerical Methods

In the simplest case of absence of both the sample in-

sertion hole and sample holder, i.e., ~Yl = Hz = O and C,l

= 1, we have C = El, T = O and F: = F:. The problem

is thus reduced to solving only (9). To avoid a trivial so-

lution, it is required that

det G = O. (12)

The solution of this equation gives us the resonant fre-

quency of the cavity without holes. With the known~O and

assumed unity bo, b,. can be found by solving (9), from

which, a. and dl can in turn be calculated simply by (8)

and (7).

In the presence of sample insertion holes, F: cannot be

expressed in an explicit form as F: in (6), but can be

found along with the resonant frequency ~. through solv-

ing (9) and (11 ) simultaneously. Since matrix elements gti

and ttiare nonlinear functions of j. and F;, the problem

is one of solving a set of nonlinear algebraic equations

with 2M variables: ~o, F: (m = O, 1, . 0 “ . M – 1) and

b~(m=l,2, .””, M – 1). However, this problem can

also be defined as searching for ~. and F; that not only

satisfy (12) and

det T=O (13)

but also gives an identical solution of E from (9) and (1 1),
i.e. ,

(b,& = (bn)~. (14)

From a practical point of view, we may be content with

an approximate solution of (12)-(14), which can be ob-

tained through a procedure of minimizing the following

2

.5
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Fig. 2. The convergence rate of the calculation; N, M and L are the num-

ber of modes in subarea A, B and C (or D) which are preserved after the

truncation; r. = r, = 0.25. rl = 1.25, rz = 4.5, L = 20.0, D = 0.5, in

cm, ~, = 10.O, J, = 3070 MHz.

TABLE I
CALCULATED RESONANT FREQUENCIES (MHz) AS COMPARED WITH

MEASUREMENTS

D (CM) A (talc.) & (mess.) A~O/fi (%)

0.20 3040.3 3042.1 –0.059
0.30 3052.2 3054.0 –0.057
0.50 3072.0 3073.0 –0.032

0.75 3091.2 3090.8 +0.013

1.00 3106.8 3105..5 +0.042

r. = 0.355, rl = 1.244, r~ = 5.0, L = 20.0 cm, e, = 1

objective function:

Ob (~o, F;, “ “ “ , F~_l)

——

where, W1, W2 and

Wll det G) +Wzl det TI

M–1

+ W3 ~~1 I (k)G – (bmh I (15)

W3 are weight factors which are ad-

justed during the calculation [14].

Since the field expansions in subarea B for a gap less
than A/10 are rapidly convergent series, M can be as small

as four. Due to a small number of variables, the simplex

method [141, one of the direct minimizing methods, is

chosen to search for ~. and F: that minimize Ob. Based

on this algorithm, a computer program is implemented to

calculate the resonant frequencies, mode amplitudes of

each subarea and the Q-factor of a given dielectric loaded

cavity. It takes half a minute of CPU time on our Amdahl

(5870) main frame if well-guessed initial values of j$ and

F: are entered. Fig. 2 exhibits the convergence rate of

the calculation and shows that the calculation errors,
which are mainly due to truncation errors, are within ~ 0.1

MHz at 3.0 GHz if N > 50. Moreover, calculated reso-

nant frequencies of an empty cavity with varied gap widths
are listed in Table I along with the measured values, which

shows the discrepancy to be smaller than 0.06%. It should

be mentioned that the error of frequency measurements

may be as large as *O. 5 MHz for our scalar network ana-

lyzer (HP8756A) even after a one-hour warm-up and cal-

ibration EtgalinSt a microwave counter (EIP575).
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III. HOLE EFFECTS

The presence of the sample insertion hole in the re-en-

trant gap has similar effects on cavity characteristics as

widening the gap. Using this analogy, we may qualita-

tively expect that the holes will cause the gap capacitance

to decrease, or resonant frequency to increase, and the

gap E-field to decrease. The reduced field will in turn

lessen the dielectric sample loading effects [13], namely,

the frequency shift and Q-factor drop due to the sample.

All these effects are discussed in detail below based on

the numerical calculations.

A. Hole Field Attenuation

Due to the diameter of the holes being much less than

the wavelength, fields cannot propagate but diminish

along a path deeper into the holes. As shown in Fig. 3,

the field, at some distance into the hole, is attenuated to,

say 5 % which corresponds to a negligible variation in the

calculated resonant frequency. This distance, zk, normal-

ized by the hole diameter, may be called the effective

depth of the hole. The effective depth will increase if a

sample is introduced, in particular, a high permittivity

sample. The dependence of the effective depth on a sam-

ple’s dielectric constant is illustrated by the calculated re-

sults shown in Fig. 4. As expected, while the dielectric

constant increases, the effective depth increases, and

eventually reaches infinity where the hole no longer acts

as a waveguide operating below cutoff. Moreover, the ef-

fective depth indicates the closest artificial wall position

which one can use in the mode-matching analysis,

namely, HI = –Hz > Zh. This is then also the minimum

sample length which one can use in practical measure-

ments.

B. Gap Field Distribution

As predicted, the E-field intensity in the re-entrant gap

is weakened and its peak value no longer occurs on the

axis when the holes are present adjacent to the gap. This

is demonstrated in Fig. 5, where radial distributions of EZ

in the midplane of the re-entrant gap are plotted for three

cavities: (1) without insertion holes or a sample holder;

(2) with insertion holes but without the holder and (3)

with both insertion holes and the holder. It shows that the
peak field is shifted from the axis to the radial edge of the

holes and that the presence of a sample holder reduces the

gap field further.

C. Resonant Frequency Shiji

For the same cavity structures (1), (2) and (3) as shown

in Fig. 5, resonant frequency shifts are calculated with

varying dielectric constants and plotted in Fig. 6. The re-

sults are in qualitative agreement with those of the gap

field in Fig. 5. In other words, the stronger the gap field,

the greater the shift in resonant frequency. The slope of

A~o versus e, determines the sensitivity in dielectric de-

terminations. However, it also commands the measurable
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Fig. 3. The axial distribution of the normalized E, along z-axis (for cavity
size, see Fig. 5).
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Fig, 4. The effective hole depth of cavity (3) (See Fig. 5) as a function of

sample’s dielectric constant at about 3 GHz.
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Fig. 5. The radial distribution of the normalized E, at the gap midplane at
about 3 GHz; cavity (l) —without hole and holder (r. = O), cavity (2)—
with hole and without holder (FO = r,), cavity (3)—with both hole and
holder (rO = 0.37 cm. e,,, = 3.78); the rest cavity dimensions are identical,
i.e. r, = 0.24, r, = 1.23, rz = 4.51, L = 20.5, D = 0.3 cm.

range of dielectric properties because a larger detuning of

a resonator tends to bring about more difficulties such as

impedance mismatch in practical measurements. There-

fore, a coaxial cavity with sample insertion holes and
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Fig. 6. Resonant frequency shift produced by a sample at about
cavity (1), (2) and (3) are the same as in Fig. 5.

3 GHz;

holder can extend the measurable range of dielectric prop-

erties. Moreover, it presents a better linearity of fre-

quency shift as a function of dielectric constant. As shown

in Fig. 6, the curve for cavity (3) is almost a straight line

Up to 6, = 80, which is a great convenience in dielectric

determinations. This improvement in linearity is not only

the consequence of a reduction of the gap field but also

the outcome of an increased effective hole depth at a

higher dielectric constant which offsets the saturation ex-

hibited for a normal detuning curve, such as the curve for

cavity (1) in Fig. 6.

D. Energy Stored and Dissipated in $ample

The electric energy stored in a sample can be broken

into two parts, namely, the gap portion energy and the

hole portion energy. The presence of the holes reduces

the gap pottion energy because of the decreased gap field

but also yields an additional energy in the holes. To ex-

amine these two portions of energy closely, the stored en-

ergy in a sample is integrated over the volume of the gap

and the holes separately for varied dielectric constants,

and the results are presented in Fig. 7 together with the

results for the no-hole case, It shows that the hole portion

contributes an appreciable percentage of the total energy

stored in the sample, and that it increases with dielectric

constant at an increasing rate. It is tlhis hole portion en-

ergy that compensates for the reduction of the E-field in

the sample due to the increase of the dielectric constant,

thus extending the linear range in the curve of the reso-

nant frequency shift versus dielectric constant.

According to the approximation of perturbation theory,

the dissipated energy in the sample is directly propor-

tional to the stored energy, with the constant of propor-

tionality being the loss tangent of the sample. Conse-

quently, for a constant loss tangent, the dissipated energy

in the sample increases with the dielectric constant, e,, in

the same manner as the stored energy, i.e., at a nearly
constant rate in the lower range of 6, and at an increasing

rate at higher e,. When the cavity is loaded with a sample

having both a high dielectric constant and a high loss tan-

gent, it will present a very low Q-factor and will be se-

verely under-coupled. Therefore, in order to obtain a

wider measurement range, the sample volume must still

1 1,, ,,1, ,,,1, ,,,1’’”1 ,,, ,1,,’ .1”’

.9

g :; cavity (1)

c .6
W
g .5

# :;

.2

.1

a

E,

Fig. 7. Normalized electric energy stored m a sample, as a function of the

sample’s dielectric constant; for cavity (1) and (3), (see Fig. 5).

be limited, even though the insertion hole already tends

to lower the gap fields.

IV. DIELECTRIC DETERMINATION AND ERROR

ANALYSIS

To determine dielectric constants and loss tangents, it

is essential tlo find their relationships to the measurable

parameters, which are the resonant frequency shift and

the Q-factor change produced by the sample in case of

cavity perturbation methods. Such relationships earn be

easily obtained by the mode-matching analysis in the form

of calibration curves.

A. Dielectric Constant and its Error

A calibration curve of dielectric constant is given in

Fig. 8, corresponding to the geometry of our experimental

cavity and the frequency band of interest. Using a least

square fit, this curve can also be expressed by the poly-

nomial

er = 1 + 1.56 (Afi) + 0,071 (Afi)2 –0.0014(Afi)3

–().~~ X 10-b(A~O)4 +0.11 X 10-G(Afi)5 (16)

where A~o is the absolute value of the resonant frequency

shift in MHz produced by a sample of permittivity, ~,.

Thus, the dielectric constant can be readily determined,

either graphically or mathematically, once the resonant

frequency shift due to the inserted sample is measured.

If we initially neglect the error in the calibration curve,

the uncertainty in the determined dielectric constant can

be evaluated by

(17)

where, zfe,/d ( A~o) is the slope of the dielectric calibra-

tion curve which is also plotted in Fig. 8 and ~ ( A,fo) is
the measurement error in the resonant frequency shift.

Since d~,/d(AfO) s 2.8/MHz and 6 (A~o) s 0.03 MHz

for, say an HP8350 Sweep Oscillator, 6 e, will not exceed

+0.1.

The errors in the calibration curve include numerical

errors such as truncation errors and round-off errors, er-
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Fig, 9. Theeffect ofva~ing sampleradii ontheresonant frequencyshift;
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rors due to the uncertainties in cavity and sample dimen-

sions: r~, ro, rl, r2, L and D, and errors caused by the

departures of a real cavity from the ideal mathematical

model as caused by eccentricity of the sample placement,

effects of the movable short circuit and coupling loop.

Obviously, the use of the resonant frequency shift instead

of the resonant frequency itself greatly reduces most of

these errors. Furthermore, the structure with the sample

insertion holes limits the eccentricity of sample placement

and also eliminates completely the air gap problem which

may cause an error of over 10% in c, [7].

Nevertheless, the error in the determined ~, is more sen-

sitive to the uncertainties in sample radius (r,) and gap

width (D) than in the other dimensions. Figs. 9 and 10

demonstrate the influences of variations in r, and D on the

calculated A~o, and in turn on ~,. From Fig. 9, it can be
seen that if a sample holder is not used, even a slight

looseness of the sample in the holes will produce a sig-

nificant error in A~o, in the same way as the axial air gap

in cavities without insertion holes. Fortunately, this error

can be greatly suppressed by using a low permittivity

sample holder such as a quartz tube (e,l = 3.78). The

error caused by a variation of D is relatively small and

will not exceed 1 % if AD is controlled within 1%. It

would be much larger if the cavity had no insertion hole

and thus axial air gaps existed unavoidably at the sample

ends. The results in Figs. 9 and 10 also show that 1) the

error in A~o will become larger for a higher dielectric con-

3
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1,,,,1,,,,1,,,,1,,,,1 ,V,,l,,,,l,,

1,, , ,1,,,,1,,,,1,,,,1 ,,, t-
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Fig. 10. The effect of varying gap widths on the resonant frequency shift:
the cavity is the same as in Fig. 8.
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Fig, 11. Calibration curve for determmmg loss tangent; the cavity is iden-

tical to that in Fig, 8,

stant sample and a narrower gap; 2) the error caused by

the looseness of the sample and the sample holder may be

compensated by using a slightly larger gap to keep the

sample volume in the gap constant.

B. Loss Tangent and its Error

The Q-factor of a dielectric loaded cavity can be ex-

pressed as

l/Q~ = l/Qc + l/Q~ (18)

where, Qc and QD is the cavity Q-factor which accounts

for the wall loss and the sample loss, respectively. By

definition, Q~ can be written as

l/Q~ = F, tan 8 (19)

Fl = W~/Wc (20)

where, Wc and WD is the electric energy stored in the

whole cavity and in the sample respectively, and FI is their

ratio which represents the degree of sample loading to a

cavity and is called sample loading factor. From (18) and

(19), the loss tangent can be found by

tan 8 = (l/QL –l/Qc)/l?l

= (l/QL –l/Qo)/Fl = A(l/Q)/Fl (21)

Q. is the unloaded cavity Q-factor and it, together with

Q~, can be obtained from measurements. In Fig. 11 is

plotted the calibration curve of loss tangent, i.e., 1 /Fl,
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TABLE II
EXPERIMENTAL RESULTS OF DIELECTRIC PROPERTIESAS COMPARED WITH PUBLISHED DATA (.f = 3.05 GHz, 7’= 23 ‘C)

Present Work Reference Data

Sample e, Ae, tan 6 A tan 8 e, tan 6

Teflon 1.94 +0.08 0.0025 + 0.0(D06 2.05 0.0083 (1)
–1.16 –().0(0()6 2.10 0.0002 (2)

Nylon 2.94 +0.07 0.010 +0.0(026 3.04 0.012 (2)
–0.19 –0.0(022

Quartz 3.74 +0.06 0.0005 +0.01D012 3.78 0.0005 (3)
(Coming) –0.20 –0.O(DO1

Soda Lime 6.45 +0.04 0.012 +0.01034 6.71 0.013 (2)
(0080, Coming) –0.28 –0.0(D24

Alumina 8.70 +0.03 0.0008 +0.010012 9.30 0.0002 (4)
(Al-23, JM) -0.36 –0.01001

Cuo 3.44 +0.05 0.247 +0.037 3.20 0.28 (5)
(powder, 2.70 g/cc) –0.20 -0.025

Benzene 2.24 +0.04 0.0040 *0.001 2.28 SO.002 (6)
-0.12

Monochlorobenzene 5.39 +0.05 0.110 +0.024 5.54 0.12 (7)
–0.15 –0.022

Methanol 19.9 +0.30 0.744 +-0.15 18.9 0.75 (8)
21.0 0.62 (2)

Distilled Water 76.5 -1.2 0.153 +0.035 77.3 0.155 (2)
–0.030

O.lM NaCl 73.3 –1.2 0.219 +0.05 75.2 0.225 (9)
–0.04

10%A, 20%M and 6.66 +0.03 0.278 +0.061 7.3 0.22 (7)

70%B -0.20 –0.056
40%W and 60%M 45.9 -0.69 0.426 +0.094 46.0 0.37 (7)

–0.085

A-Acetone, M-Methanol, B-Benzene, W-Distilled Water
(1) HP Product Note 8510-3, Aug. 1985

(2) A. R. von Hippel, Dielectric Materials and Application, MIT Press, 1954

(3) A. C. Metaxas, et al, Industrial Microwave Heating, IEE England, UK, 1988
(4) Data from Superior Technical Ceramics Corp., St. Albans, VT, U.S.A.
(5) W. R. Tinga, Electromagnetic Energy Reviews, vol. 1, p. 47, 1988

(6) B, Terselius, et al., J. of Microwave Power, 13(4), p. 327, 1978
(7) P. O. Risman, et al., J. of Microwave Power, 6(2), p. 101, 1971
(8) B. P. Jordan, et al., J. Phys. D: Appl. Phys., vol. 11, p. 695, 1978

(9) A. Stogryn, IEEE TRANS. Microwave Theory Tech. vol. MTT-19, p. 733, Aug. 1971

which, from (21), is equal to the loss tangent if A (1 /Q)

– 1, as a function of ~,. This curve corresponds to the—

same cavity as the calibration curve of dielectric constant.

As before, this curve can also be expressed by

l/F’l = 2101/6, +127 – 2.776, +0.0253~~ . (22)

Therefore, the loss tangent can be readily found if the Q

change is measured and the dielectric constant is known.

The error involved in the thus determined loss tangent is

estimated as follows.
Taking the variation of (21) and dividing it by tan 6,

we have

ti(tan 6) = 6( A(l/Q)) + ~,1~(1,~1)
(23)

tart 6 A(l/Q)

which means that the relative error in tan 8 is broken into

two parts, the part due to the Q-measurement error

8( A(l/Q)) _ Q~6Qo –Q~&QL

A(l/Q) – QLQo(Qo – QL)
(24)

and the part due to the error in dielectric constant trans-

ferred through the filling factor

FJ6 (1 /F~) = F’/(a (1 /F~)/dEr) “ tkr (25)

If the approximation is made that 6Q0 = 6Q~ = 6Q and

(QL + Qo) /(Q~ Qo) = 2/Q, (25) becomes

c$(A(l/Q))/(A(l/Q) = –28Q/Q (26)

where 6Q / Q can be treated as the average relative error

in Q measurements. In our calibrated scalar reflectonmter

setup, such an error is mainly caused by the directivit y of

the dual directional coupler and is estimated to be +-10%

for a 30 dB directivity and +4% for a 40 dB directivity

in the worst case [15].

The term clf F’l (d (1 /Fl) /~q.) is also plotted in Fig. 11.

From before, 16c, I s 0.1, so that the tan 6 error from ~,

is negligible if e, > 10. However, this error will rise to

8% when e, is close to unity.

V. EXPERIMENTAL MEASUREMENTS

It has been shown that the dielectric constant and loss

tangent of a sample can be determined from two theoret-

ical calibration curves if one can measure the resonant

frequency and Q-factor before and after the sample is in-

serted. In this work, a scalar network analyzer (HP8756A)

is utilized in a reflectometer setup [16] to measure the

reflection spectrum, from which the resonant frequency

and Q-factor are found.
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A number of different samples were measured with the

coaxial cavity analyzed above and their dielectric prop-

erties were determined using the calibration curves in

Figs. 8 and 11, The results and their maximum error

ranges are presented, together with the published data, in

Table II.

The A e, in Table II is estimated by considering the er-

ror in measured A~o and the error due to the looseness of

the test tube and samples. The former causes a maximum

error of + 0.1 % in ~,; the latter is equivalent to a sample

radius variation of –0..5% to –1.0% and –1.0% to

– 1.5 % which results in a maximum relative error of – 1 %

to – 1.5% and – 1 % to –3 % in ~, for liquid and solid

samples respectively. The errors in loss tangent are mainly

caused by the inaccuracy of Q measurements which is

+10 % for the worst case in our experimental setup. The

inaccuracy of ~,, although to a lesser degree, also implic-

itly affects the accuracy of loss tangent as seen in (25).

The method of dielectric measurement presented is

based on the calculated calibration curves. In this sense,

it is an absolute method which does not rely on the ref-

erence data. Nevertheless, it still gives results in good

agreement with the reference data as shown in Table II.

VI. SUMMARY

A coaxial re-entrant cavity with composite sample in-

sertion holes is analyzed using a four-subarea mode-

matching formulation. The numerical results reveal that

the hole presence leads not only to a reduction of the gap

field but also to an energy storage inside the holes. These

hole effects result in a nearly linear function of the reso-

nant frequency shift for varying dielectric constants.

Two calibration curves for determining the dielectric

constant and loss factor are derived from theoretical cal-

culations rather than from experimental measurements.

Nonetheless, the dielectric data obtained from such an ab-

solute method are still in good agreement with the pub-

lished data. The error analysis show that the accuracy can

be improved further if the measurement errors in the res-

onant frequency and Q-factor are reduced.
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